Search results
Results From The WOW.Com Content Network
G 2 phase, Gap 2 phase, or Growth 2 phase, is the third subphase of interphase in the cell cycle directly preceding mitosis. It follows the successful completion of S phase, during which the cell’s DNA is replicated. G 2 phase ends with the onset of prophase, the first phase of mitosis in which the cell’s chromatin condenses into chromosomes.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
The G 2-M checkpoint occurs between the G 2 and M phases. The spindle checkpoint occurs during the M phase. Key cyclins associated with each phase are shown. Cell cycle checkpoints are control mechanisms in the eukaryotic cell cycle which ensure its proper progression.
Interphase is the active portion of the cell cycle that includes the G1, S, and G2 phases, where the cell grows, replicates its DNA, and prepares for mitosis, respectively. Interphase was formerly called the "resting phase," but the cell in interphase is not simply dormant.
G2 is commenced by E2F-mediated transcription of cyclin A, which forms the cyclin A-Cdk2 complex. In order to proceed into mitosis, the cyclin B-Cdk1 complex (first discovered as MPF or M-phase promoting factor; Cdk1 is also known as Cdc2 in fission yeast and Cdc28 in budding yeast) is activated by Cdc25, a protein phosphatase. [1]
The centrosome cycle consists of four phases that are synchronized to the cell cycle. These include: centrosome duplication during the G1 phase and S Phase, centrosome maturation in the G2 phase, centrosome separation in the mitotic phase, and centrosome disorientation in the late mitotic phase—G1 phase.
Cells with a defective G 2-M checkpoint will undergo apoptosis or death after cell division if they enter the M phase before repairing their DNA. [1] The defining biochemical feature of this checkpoint is the activation of M-phase cyclin-CDK complexes, which phosphorylate proteins that promote spindle assembly and bring the cell to metaphase. [2]
The HDR mechanism can only be used by the cell when there is a homologous piece of DNA present in the nucleus, mostly in G2 and S phase of the cell cycle. Other examples of homology-directed repair include single-strand annealing and breakage-induced replication.