Search results
Results From The WOW.Com Content Network
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
Mechanism of Wolff-Kishner reduction Aromatic carbonyls are more readily reduced to their respective alkanes than aliphatic compounds. [ 26 ] For example, ketones are reduced to their respective alkyl benzenes by catalytic hydrogenation [ 27 ] [ 28 ] or by Birch reduction [ 29 ] under mild conditions.
The side product decomposes to carbonyl sulfide (OCS) and methanethiol. The Chugaev elimination is similar in mechanism to other thermal elimination reactions such as the Cope elimination and ester pyrolysis. Xanthates typically undergo elimination from 120 to 200 °C, while esters typically require 400 to 500 °C and amine oxides routinely ...
Cyclopamine (11-deoxojervine) is a naturally occurring steroidal alkaloid.It is a teratogenic component of corn lily (Veratrum californicum), which when consumed during gestation has been demonstrated to induce birth defects, including the development of a single eye in offspring. [1]
The acylated reaction product can be converted into the alkylated product via a Clemmensen or a Wolff-Kishner reduction. [17] The Gattermann–Koch reaction can be used to synthesize benzaldehyde from benzene. [18] The Gatterman reaction describes arene reactions with hydrocyanic acid. [19] [20]
In 1910 he described the catalytic decomposition of alcylidenhydrazines, which was later named as the Wolff–Kishner reduction. [1] [3] [4] In 1912, Kischner later applied the catalytic decomposition to pyrazoline bases and developed a versatile method for the preparation of substituted cyclopropanes by thermal decomposition of pyrazolines.
Even with the development of other variants of the Wolff-Kishner reaction, it remains a widely practiced version of the reaction today. Some other practical advantages include the simple experimental setup, inexpensive starting materials, and a reduced amount of solvent needed, factors which made the conditions suitable for use in China at the ...
The 4-acetyl group could easily be converted to a 4-ethyl group by Wolff-Kishner reduction (hydrazine and alkali, heated); hydrogenolysis, or the use of diborane. Benzyl or tert-butyl acetoacetates also work well in this system, and with close temperature control, the tert-butyl system gives a very high yield (close to 80%). [10]