When.com Web Search

  1. Ad

    related to: euclidean plane parallel lines

Search results

  1. Results From The WOW.Com Content Network
  2. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines . Line segments and Euclidean vectors are parallel if they have the same direction or opposite direction (not necessarily the same length).

  3. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .

  4. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Since non-Euclidean geometry is provably relatively consistent with Euclidean geometry, the parallel postulate cannot be proved from the other postulates. In the 19th century, it was also realized that Euclid's ten axioms and common notions do not suffice to prove all of the theorems stated in the Elements. For example, Euclid assumed ...

  6. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    The Euclidean plane follows Euclidean geometry, and in particular the parallel postulate. A projective plane may be constructed by adding "points at infinity" where two otherwise parallel lines would intersect, so that every pair of lines intersects in exactly one point.

  7. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    It follows that in a Euclidean plane, two lines either meet in one point or are parallel. The concept of parallel subspaces has been extended to subspaces of different dimensions: two subspaces are parallel if the direction of one of them is contained in the direction to the other.

  8. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    Euclidean space has parallel lines which extend infinitely while remaining equidistant. In non-Euclidean spaces, lines perpendicular to a traversal either converge or diverge. A two-dimensional space is a mathematical space with two dimensions , meaning points have two degrees of freedom : their locations can be locally described with two ...

  9. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The attitude of a lattice plane is the orientation of the line normal to the plane, [12] and is described by the plane's Miller indices. In three-space a family of planes (a series of parallel planes) can be denoted by its Miller indices (hkl), [13] [14] so the family of planes has an attitude common to all its constituent planes.