When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In the process of photosynthesis, the phosphorylation of ADP to form ATP using the energy of sunlight is called photophosphorylation. Cyclic photophosphorylation occurs in both aerobic and anaerobic conditions, driven by the main primary source of energy available to living organisms, which is sunlight.

  3. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    In the first stage, light-dependent reactions capture the energy of light and use it to make the energy-storage molecule ATP and the moderate-energy hydrogen carrier NADPH. The Calvin cycle uses these compounds to convert carbon dioxide and water into organic compounds [ 5 ] that can be used by the organism (and by animals that feed on it).

  4. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

  5. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)

  6. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the hydrogen carrier NADPH and the energy-storage molecule ATP. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.

  7. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2]

  8. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    The high-energy electron that resides on the tightly bound quinone molecule Q A is transferred to an exchangeable quinone molecule Q B. This molecule is loosely associated with the protein and is fairly easy to detach. Two electrons are required to fully reduce Q B to QH 2, taking up two protons from the cytoplasm in the process.

  9. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    Adenosine triphosphate (ATP) is a nucleoside triphosphate [2] that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known forms of life, it is often referred to as the "molecular unit of currency" for intracellular energy transfer. [3]