When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    The advanced sequence of burning fuels is driven by gravitational collapse and its associated heating, resulting in the subsequent burning of carbon, oxygen and silicon. However, most of the nucleosynthesis in the mass range A = 28–56 (from silicon to nickel) is actually caused by the upper layers of the star collapsing onto the core ...

  3. Future of an expanding universe - Wikipedia

    en.wikipedia.org/wiki/Future_of_an_expanding...

    The universe will become extremely dark after the last stars burn out. Even so, there can still be occasional light in the universe. One of the ways the universe can be illuminated is if two carbon–oxygen white dwarfs with a combined mass of more than the Chandrasekhar limit of about 1.4 solar masses happen

  4. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  5. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    The majority of these occur within stars, and the chain of those nuclear fusion processes are known as hydrogen burning (via the proton–proton chain or the CNO cycle), helium burning, carbon burning, neon burning, oxygen burning and silicon burning. These processes are able to create elements up to and including iron and nickel.

  6. Hydrogen-deficient star - Wikipedia

    en.wikipedia.org/wiki/Hydrogen-deficient_star

    A hydrogen-deficient star is a type of star that has little or no hydrogen in its atmosphere. [2] Hydrogen deficiency is unusual in a star, as hydrogen is typically the most common element in a stellar atmosphere. Despite being rare, there are a variety of star types that display a hydrogen deficiency.

  7. Nuclear timescale - Wikipedia

    en.wikipedia.org/wiki/Nuclear_timescale

    In reality, the lifespan of a star is greater than what is estimated by the nuclear time scale because as one fuel becomes scarce, another will generally take its place—hydrogen burning gives way to helium burning, etc. However, all the phases after hydrogen burning combined typically add up to less than 10% of the duration of hydrogen burning.

  8. Oxygen-burning process - Wikipedia

    en.wikipedia.org/wiki/Oxygen-burning_process

    During the oxygen-burning process, proceeding outward, there is an oxygen-burning shell, followed by a neon shell, a carbon shell, a helium shell, and a hydrogen shell. The oxygen-burning process is the last nuclear reaction in the star's core which does not proceed via the alpha process .

  9. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution