When.com Web Search

  1. Ads

    related to: mixed practice with rational numbers

Search results

  1. Results From The WOW.Com Content Network
  2. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A mixed number (also called a mixed fraction or mixed numeral) is the sum of a non-zero integer and a proper fraction, conventionally written by juxtaposition (or concatenation) of the two parts, without the use of an intermediate plus (+) or minus (−) sign. When the fraction is written horizontally, a space is added between the integer and ...

  4. Varied practice - Wikipedia

    en.wikipedia.org/wiki/Varied_Practice

    Rohrer and Taylor (2007) noted that, contrary to the basic science supporting the varied practice approach, most mathematics textbooks had each set of practice sections made up almost entirely of problems corresponding to the immediately previous lesson; only in a small number of cases did they find the practice problems to be systematically ...

  5. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.

  6. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But even with the greatest common divisor divided out, arithmetic with rational numbers can become unwieldy very quickly: 1/99 − 1/100 = 1/9900, and if 1/101 is then added, the result is 10001/999900. The size of arbitrary-precision numbers is limited in practice by the total storage available, and computation time.

  8. Risch algorithm - Wikipedia

    en.wikipedia.org/wiki/Risch_Algorithm

    Laplace solved this problem for the case of rational functions, as he showed that the indefinite integral of a rational function is a rational function and a finite number of constant multiples of logarithms of rational functions [citation needed]. The algorithm suggested by Laplace is usually described in calculus textbooks; as a computer ...

  9. Mediant (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Mediant_(mathematics)

    For a stronger connection to rational numbers the fractions may be required to be reduced to lowest terms, thereby selecting unique representatives from the respective equivalence classes. The Stern–Brocot tree provides an enumeration of all positive rational numbers via mediants in lowest terms, obtained purely by iterative computation of ...