Search results
Results From The WOW.Com Content Network
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
for every ε > 0, and whether the corresponding series of the f(n) still diverges. Once such a sequence is found, a similar question can be asked with f(n) taking the role of 1/n, and so on. In this way it is possible to investigate the borderline between divergence and convergence of infinite series.
The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.
In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence f ( n ) {\displaystyle f(n)} of non-negative real numbers , the series ∑ n = 1 ∞ f ( n ) {\textstyle \sum \limits _{n=1}^{\infty }f(n)} converges if and only if the "condensed ...
The root test is therefore more generally applicable, but as a practical matter the limit is often difficult to compute for commonly seen types of series. Integral test. The series can be compared to an integral to establish convergence or divergence. Let () = be a positive and monotonically decreasing function. If
Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions or an improper integration of functions dependent on parameters. It is related to Abel's test for the convergence of an ordinary series of real numbers, and the proof relies on the same technique of summation by parts. The test is as follows.
A series or, redundantly, an infinite series, is an ... One of the simplest tests for convergence of a series, ... form for the remainder of the Maclaurin formula ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.