When.com Web Search

  1. Ads

    related to: wolfram alpha system of linear equation solver

Search results

  1. Results From The WOW.Com Content Network
  2. Conjugate residual method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_residual_method

    The conjugate residual method is an iterative numeric method used for solving systems of linear equations. It's a Krylov subspace method very similar to the much more popular conjugate gradient method, with similar construction and convergence properties. This method is used to solve linear equations of the form

  3. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5] A linear system may behave in any one of three possible ways: The system has infinitely many solutions.

  4. Conjugate gradient squared method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_squared...

    A system of linear equations = consists of a known matrix and a known vector. To solve the system is to find the value of the unknown vector x {\displaystyle {\mathbf {x}}} . [ 3 ] [ 5 ] A direct method for solving a system of linear equations is to take the inverse of the matrix A {\displaystyle A} , then calculate x = A − 1 b {\displaystyle ...

  5. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.

  6. Minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Minimal_residual_method

    The MINRES method iteratively calculates an approximate solution of a linear system of equations of the form =, where is a symmetric matrix and a vector. For this, the norm of the residual r ( x ) := b − A x {\displaystyle r(x):=b-Ax} in a k {\displaystyle k} -dimensional Krylov subspace V k = x 0 + span ⁡ { r 0 , A r 0 … , A k − 1 r 0 ...

  7. Modified Richardson iteration - Wikipedia

    en.wikipedia.org/wiki/Modified_Richardson_iteration

    Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as =.

  8. Chebyshev iteration - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_iteration

    In numerical linear algebra, the Chebyshev iteration is an iterative method for determining the solutions of a system of linear equations. The method is named after Russian mathematician Pafnuty Chebyshev. Chebyshev iteration avoids the computation of inner products as is necessary for the other nonstationary methods. For some distributed ...

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Comments: The LUP and LU decompositions are useful in solving an n-by-n system of linear equations =. These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination.