Search results
Results From The WOW.Com Content Network
A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...
A graph with connectivity 4. In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected.
A strongly connected component C is called trivial when C consists of a single vertex which is not connected to itself with an edge, and non-trivial otherwise. [1] The yellow directed acyclic graph is the condensation of the blue directed graph. It is formed by contracting each strongly connected component of the blue graph into a single yellow ...
In computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change.
An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]
The connectivity of a graph is the minimum number of vertices that must be removed to disconnect it. Equivalently, the connectivity of a graph is the greatest integer k for which the graph is k-connected. While terminology varies, noun forms of connectedness-related properties often include the term connectivity. Thus, when discussing simply ...
A directed graph is called weakly connected if replacing all of its directed edges with undirected edges produces a connected (undirected) graph. weight A numerical value, assigned as a label to a vertex or edge of a graph. The weight of a subgraph is the sum of the weights of the vertices or edges within that subgraph. weighted graph
In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices. The property of being 2-connected is equivalent to biconnectivity, except that the complete graph of two vertices is usually ...