Search results
Results From The WOW.Com Content Network
A graph with 16 vertices and six bridges (highlighted in red) An undirected connected graph with no bridge edges. In graph theory, a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion increases the graph's number of connected components. [1] Equivalently, an edge is a bridge if and only if it is not contained in any cycle.
A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...
A set of edge s whose removal disconnects the graph. A one-edge cut is called a bridge, isthmus, or cut edge. edge set The set of edges of a given graph G, sometimes denoted by E(G). edgeless graph The edgeless graph or totally disconnected graph on a given set of vertices is the graph that has no edges. It is sometimes called the empty graph ...
A graph G which is connected but not 2-connected is sometimes called separable. Analogous concepts can be defined for edges. In the simple case in which cutting a single, specific edge would disconnect the graph, that edge is called a bridge. More generally, an edge cut of G is a set of
A cutpoint, cut vertex, or articulation point of a graph G is a vertex that is shared by two or more blocks. The structure of the blocks and cutpoints of a connected graph can be described by a tree called the block-cut tree or BC-tree. This tree has a vertex for each block and for each articulation point of the given graph.
Petersen's theorem can also be applied to show that every maximal planar graph can be decomposed into a set of edge-disjoint paths of length three. In this case, the dual graph is cubic and bridgeless, so by Petersen's theorem it has a matching, which corresponds in the original graph to a pairing of adjacent triangle faces. Each pair of ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.