When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix.

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Although a translation is a non-linear transformation in a 2-D or 3-D Euclidean space described by Cartesian coordinates (i.e. it can't be combined with other transformations while preserving commutativity and other properties), it becomes, in a 3-D or 4-D projective space described by homogeneous coordinates, a simple linear transformation (a ...

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  5. Laguerre transformations - Wikipedia

    en.wikipedia.org/wiki/Laguerre_transformations

    It's possible to express the above line coordinates as homogeneous coordinates = [⁡ (+): ⁡ (+)] where is the perpendicular distance of the line from the origin. This representation has numerous advantages: One advantage is that there is no need to break into different cases, such as parallel to the x {\displaystyle x} -axis and non-parallel.

  6. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Furthermore, not all six components can be zero. Thus the Plücker coordinates of L may be considered as homogeneous coordinates of a point in a 5-dimensional projective space, as suggested by the colon notation. To see these facts, let M be the 4×2 matrix with the point coordinates as columns.

  7. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  8. Translation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_(geometry)

    Matrix multiplications always have the origin as a fixed point. Nevertheless, there is a common workaround using homogeneous coordinates to represent a translation of a vector space with matrix multiplication : Write the 3-dimensional vector v = ( v x , v y , v z ) {\displaystyle \mathbf {v} =(v_{x},v_{y},v_{z})} using 4 homogeneous coordinates ...

  9. Eight-point algorithm - Wikipedia

    en.wikipedia.org/wiki/Eight-point_algorithm

    The basic eight-point algorithm is here described for the case of estimating the essential matrix .It consists of three steps. First, it formulates a homogeneous linear equation, where the solution is directly related to , and then solves the equation, taking into account that it may not have an exact solution.