Search results
Results From The WOW.Com Content Network
Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw.
The yaw axis has its origin at the center of gravity and is directed towards the bottom of the aircraft, perpendicular to the wings and to the fuselage reference line. Motion about this axis is called yaw. A positive yawing motion moves the nose of the aircraft to the right. [1] [2] The rudder is the primary control of yaw. [3]
Flight dynamics is the science of air-vehicle orientation and control in three dimensions. The critical flight dynamics parameters are the angles of rotation with respect to the three aircraft's principal axes about its center of gravity, known as roll, pitch and yaw.
Yaw string used in front of the cockpit of an F-14D Tomcat. In flight, pilots are instructed to step on the head of the yaw string; the head is the front of the string, where the string is attached to the aircraft. If the head of the yaw string is to the right of the yaw string tail, then the pilot should apply right rudder pressure.
First-person shooter (FPS) games generally provide five degrees of freedom: forwards/backwards, slide left/right, up/down (jump/crouch/lie), yaw (turn left/right), and pitch (look up/down). If the game allows leaning control, then some consider it a sixth DOF; however, this may not be completely accurate, as a lean is a limited partial rotation.
A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal.
This is typically controlled by the rudder at the rear of the airplane. Roll (bank) – in which one wing of the airplane moves up and the other moves down. This is typically controlled by ailerons on the wings of the airplane. Coordinated flight requires the pilot to use pitch, roll and yaw control simultaneously. See also flight dynamics.
It is possible to imagine an airplane rotated by the above-mentioned Euler angles using the X-Y-Z convention. In this case, the first angle - is the pitch. Yaw is then set to and the final rotation - by - is again the airplane's pitch. Because of gimbal lock, it has lost one of the degrees of freedom - in this case the ability to roll.