When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arrhenius plot - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_plot

    The expression ⁡ (/) represents the fraction of the molecules present in a gas which have energies equal to or in excess of activation energy at a particular temperature. In almost all practical cases, E a ≫ R T {\displaystyle E_{\text{a}}\gg RT} , so that this fraction is very small and increases rapidly with T {\displaystyle T} .

  3. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.

  4. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  5. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy ( E a ) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [ 2 ]

  6. Entropy of activation - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_activation

    In chemical kinetics, the entropy of activation of a reaction is one of the two parameters (along with the enthalpy of activation) that are typically obtained from the temperature dependence of a reaction rate constant, when these data are analyzed using the Eyring equation of the transition state theory.

  7. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    TST has been less successful in its original goal of calculating absolute reaction rate constants because the calculation of absolute reaction rates requires precise knowledge of potential energy surfaces, [2] but it has been successful in calculating the standard enthalpy of activation (ΔH ‡, also written Δ ‡ H ɵ), the standard entropy ...

  8. Time–temperature superposition - Wikipedia

    en.wikipedia.org/wiki/Time–temperature...

    The time–temperature shift factor can also be described in terms of the activation energy (E a). By plotting the shift factor a T versus the reciprocal of temperature (in K), the slope of the curve can be interpreted as E a /k, where k is the Boltzmann constant = 8.64x10 −5 eV/K and the activation energy is expressed in terms of eV.

  9. Brønsted catalysis equation - Wikipedia

    en.wikipedia.org/wiki/Brønsted_catalysis_equation

    A plot of the common logarithm of the reaction rate constant k versus the logarithm of the ionization constant K a for a series of acids (for example a group of substituted phenols or carboxylic acids) gives a straight line with slope α and intercept C. The Brønsted equation is a free-energy relationship.