Search results
Results From The WOW.Com Content Network
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
Sodium forms complexes with crown ethers, cryptands and other ligands. [33] For example, 15-crown-5 has a high affinity for sodium because the cavity size of 15-crown-5 is 1.7–2.2 Å, which is enough to fit the sodium ion (1.9 Å).
Each ion can be either monatomic (termed simple ion), such as sodium (Na +) and chloride (Cl −) in sodium chloride, or polyatomic, such as ammonium (NH + 4) and carbonate (CO 2− 3) ions in ammonium carbonate. Salts containing basic ions hydroxide (OH −) or oxide (O 2−) are classified as bases, such as sodium hydroxide and potassium oxide.
Sodium chloride / ˌ s oʊ d i ə m ˈ k l ɔːr aɪ d /, [8] commonly known as edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chlorine ions. It is transparent or translucent, brittle, hygroscopic , and occurs as the mineral halite .
The structure of sodium chloride, revealing the tendency of chloride ions (green spheres) to link to several cations. The presence of chlorides, such as in seawater, significantly worsens the conditions for pitting corrosion of most metals (including stainless steels, aluminum and high-alloyed materials). Chloride-induced corrosion of steel in ...
For example, 15-crown-5 has a high affinity for sodium because the cavity size of 15-crown-5 is 1.7–2.2 Å, which is enough to fit the sodium ion (1.9 Å). [ 19 ] [ 20 ] Cryptands, like crown ethers and other ionophores , also have a high affinity for the sodium ion; derivatives of the alkalide Na − are obtainable [ 21 ] by the addition of ...
The hydroxide ion appears to rotate freely in crystals of the heavier alkali metal hydroxides at higher temperatures so as to present itself as a spherical ion, with an effective ionic radius of about 153 pm. [39] Thus, the high-temperature forms of KOH and NaOH have the sodium chloride structure, [40] which gradually freezes in a ...
In the empirical formula for this ionic compound, the positively charged sodium ion is balanced by a negatively charged chloride ion. The traditional explanation for stable Na + is that the loss of one electron from elemental sodium to produce a cation with charge of +1 produces a stable closed-shell electron configuration.