Search results
Results From The WOW.Com Content Network
A boiling water reactor (BWR) is a type of nuclear reactor used for the generation of electrical power. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR). BWR are thermal neutron reactors, where water is thus used both as a coolant and as a moderator, slowing down
The progenitor of the BWR line was the 5 MW Vallecitos Boiling Water Reactor (VBWR), brought online in October 1957. Six design iterations, BWR-1 through BWR-6, were introduced between 1955 and 1972. This was followed by the Advanced Boiling Water Reactor (ABWR) introduced in the 1990s and the Economic Simplified Boiling Water Reactor (ESBWR ...
A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan, India and Canada). In a PWR, water is used both as a neutron moderator and as coolant fluid for the reactor core.
In the boiling water reactor, the heat generated by fission turns the water into steam, which directly drives the power-generating turbines. But in the pressurized water reactor, the heat generated by fission is transferred to a secondary loop via a heat exchanger. Steam is produced in the secondary loop, and the secondary loop drives the power ...
The Reactor Protection System (RPS) is a system, computerized in later BWR models, that is designed to automatically, rapidly, and completely shut down and make safe the Nuclear Steam Supply System (NSSS – the reactor pressure vessel, pumps, and water/steam piping within the containment) if some event occurs that could result in the reactor entering an unsafe operating condition.
The use of heavy water as the moderator is the key to the PHWR (pressurized heavy water reactor) system, enabling the use of natural uranium as the fuel (in the form of ceramic UO 2), which means that it can be operated without expensive uranium enrichment facilities.
BWR? 1600 4300 Updated version of the ABWR designed to meet EU guidelines, increase reactor output, and improve design generation to III+. Areva: Kerena: 1250 1290 3370 Previously known as the SWR-1000. Based on German BWR designs, mainly that of Gundremmingen units B/C. Co-developed by Areva and E.ON. General Electric, Hitachi: ESBWR: 1520 ...
The advanced boiling water reactor (ABWR) is a Generation III boiling water reactor. The ABWR is currently offered by GE Hitachi Nuclear Energy (GEH) and Toshiba . The ABWR generates electrical power by using steam to power a turbine connected to a generator; the steam is boiled from water using heat generated by fission reactions within ...