When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Central angle - Wikipedia

    en.wikipedia.org/wiki/Central_angle

    Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    The central angle between the two points can be determined from the chord length. The great circle distance is proportional to the central angle. The great circle chord length, , may be calculated as follows for the corresponding unit sphere, by means of Cartesian subtraction:

  4. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    Draw an angle whose vertex is point V and whose sides pass through points A, B. Draw line OA. Angle ∠BOA is a central angle; call it θ. Lines OV and OA are both radii of the circle, so they have equal lengths. Therefore, triangle VOA is isosceles, so angle ∠BVA (the inscribed angle) and angle ∠VAO are equal; let each of them be denoted ...

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}

  6. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.

  7. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle. The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure).

  8. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    What can be stated is that as the central angle gets smaller (or alternately the radius gets larger), the area a rapidly and asymptotically approaches . If θ ≪ 1 {\displaystyle \theta \ll 1} , a = 2 3 c ⋅ h {\displaystyle a={\tfrac {2}{3}}c\cdot h} is a substantially good approximation.

  9. Circular sector - Wikipedia

    en.wikipedia.org/wiki/Circular_sector

    A sector with the central angle of 180° is called a half-disk and is bounded by a diameter and a semicircle.Sectors with other central angles are sometimes given special names, such as quadrants (90°), sextants (60°), and octants (45°), which come from the sector being one quarter, sixth or eighth part of a full circle, respectively.