Search results
Results From The WOW.Com Content Network
There are several approaches to understanding reflections, but the relationship of reflections to the conservation laws is particularly enlightening. A simple example is a step voltage, () (where is the height of the step and () is the unit step function with time ), applied to one end of a lossless line, and consider what happens when the line is terminated in various ways.
The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...
If the source impedance matches the line, reflections from the load end will be absorbed at the source end. If the transmission line is not matched at both ends reflections from the load will be re-reflected at the source and re-re-reflected at the load end ad infinitum, losing energy on each transit of the transmission line. This can cause a ...
For example, the point P1 in the example representing a reflection coefficient of has a normalised impedance of = +. To graphically change this to the equivalent normalised admittance point, say Q1, a line is drawn with a ruler from P1 through the Smith chart centre to Q1, an equal radius in the opposite direction.
An exploration of transformation geometry often begins with a study of reflection symmetry as found in daily life. The first real transformation is reflection in a line or reflection against an axis. The composition of two reflections results in a rotation when the lines intersect, or a translation when they are parallel.
For example, + is a slight rotation about the axis, and it can be written as a geometric product (a transform composition) of and +, both of which are planar reflections intersecting at the line . In fact, any rotation can be written as a composition of two planar reflections that pass through its axis; thus it can be called a 2-reflection . [ 11 ]
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
In a Euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a hyperplane. Some mathematicians use "flip" as a synonym for "reflection". [2 ...