When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torricelli's law - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_law

    By measuring the level of water remaining in the vessel, the time can be measured with uniform graduation. This is an example of outflow clepsydra. Since the water outflow rate is higher when the water level is higher (due to more pressure), the fluid's volume should be more than a simple cylinder when the water level is high.

  3. Kelvin wake pattern - Wikipedia

    en.wikipedia.org/wiki/Kelvin_wake_pattern

    This formula implies that the group velocity of a deep water wave is half of its phase velocity, which, in turn, goes as the square root of the wavelength. Two velocity parameters of importance for the wake pattern are: v is the relative velocity of the water and the surface object that causes the wake.

  4. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Another possible formula for calculating buoyancy of an object is by finding the apparent weight of that particular object in the air (calculated in Newtons), and apparent weight of that object in the water (in Newtons). To find the force of buoyancy acting on the object when in air, using this particular information, this formula applies:

  5. Wake (physics) - Wikipedia

    en.wikipedia.org/wiki/Wake_(physics)

    This pattern consists of two wake lines that form the arms of a chevron, V, with the source of the wake at the vertex of the V. For sufficiently slow motion, each wake line is offset from the path of the wake source by around arcsin(1/3) = 19.47° and is made up of feathery wavelets angled at roughly 53° to the path.

  6. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    An object moving downward faster than the terminal velocity (for example because it was thrown downwards, it fell from a thinner part of the atmosphere, or it changed shape) will slow down until it reaches the terminal velocity. Drag depends on the projected area, here represented by the object's cross-section or silhouette in a horizontal plane.

  7. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    When a fluid flows around an object, the fluid exerts a force on the object. Lift is the component of this force that is perpendicular to the oncoming flow direction. [ 1 ] It contrasts with the drag force, which is the component of the force parallel to the flow direction.

  8. Hull speed - Wikipedia

    en.wikipedia.org/wiki/Hull_speed

    As a ship moves in the water, it creates standing waves that oppose its movement.This effect increases dramatically in full-formed hulls at a Froude number of about 0.35 (which corresponds to a speed/length ratio (see below for definition) of slightly less than 1.20 knot·ft −½) because of the rapid increase of resistance from the transverse wave train.

  9. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    The Earth completes one rotation for each sidereal day, so for motions of everyday objects the Coriolis force is imperceptible; its effects become noticeable only for motions occurring over large distances and long periods of time, such as large-scale movement of air in the atmosphere or water in the ocean, or where high precision is important ...