When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.

  3. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.

  4. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    f p+1 ≡ 0 (mod p), where f k is the k-th Fibonacci number. The first condition is the Fermat primality test using base 2. In general, if p ≡ a (mod x 2 +4), where a is a quadratic non-residue (mod x 2 +4) then p should be prime if the following conditions hold: 2 p−1 ≡ 1 (mod p), f(1) p+1 ≡ 0 (mod p), f(x) k is the k-th Fibonacci ...

  5. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    This is often written symbolically as f (n) ~ n 2, which is read as "f(n) is asymptotic to n 2". An example of an important asymptotic result is the prime number theorem. Let π(x) denote the prime-counting function (which is not directly related to the constant pi), i.e. π(x) is the number of prime numbers that are less than or equal to x.

  6. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [ 4 ] [ 5 ] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } ). [ 6 ]

  7. Fibonacci prime - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_prime

    A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]

  8. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    This theory includes the replacement axiom, which may be stated as: If X is a set and F is a function, then F[X] is a set. In alternative formulations of the foundations of mathematics using type theory rather than set theory, functions are taken as primitive notions rather than defined from other kinds of object.

  9. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    Floor function: if x is a real number, ⌊ ⌋ is the greatest integer that is not greater than x. ⌈ ⌉ Ceiling function: if x is a real number, ⌈ ⌉ is the lowest integer that is not lesser than x. ⌊ ⌉ Nearest integer function: if x is a real number, ⌊ ⌉ is the integer that is the closest to x.] ,