Search results
Results From The WOW.Com Content Network
The pocket algorithm with ratchet (Gallant, 1990) solves the stability problem of perceptron learning by keeping the best solution seen so far "in its pocket". The pocket algorithm then returns the solution in the pocket, rather than the last solution.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Foundations of Machine Learning. MIT Press, 2018. Chapter 2 contains a detailed treatment of PAC-learnability. Readable through open access from the publisher. D. Haussler. Overview of the Probably Approximately Correct (PAC) Learning Framework. An introduction to the topic. L. Valiant. Probably Approximately Correct. Basic Books, 2013.
A row of slot machines in Las Vegas. In probability theory and machine learning, the multi-armed bandit problem (sometimes called the K-[1] or N-armed bandit problem [2]) is a problem in which a decision maker iteratively selects one of multiple fixed choices (i.e., arms or actions) when the properties of each choice are only partially known at the time of allocation, and may become better ...
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".
The CN2 induction algorithm is a learning algorithm for rule induction. [1] It is designed to work even when the training data is imperfect. It is based on ideas from the AQ algorithm and the ID3 algorithm. As a consequence it creates a rule set like that created by AQ but is able to handle noisy data like ID3.
The first "ratchet" is applied to the symmetric root key, the second ratchet to the asymmetric Diffie Hellman (DH) key. [1] In cryptography, the Double Ratchet Algorithm (previously referred to as the Axolotl Ratchet [2] [3]) is a key management algorithm that was developed by Trevor Perrin and Moxie Marlinspike in 2013.