Search results
Results From The WOW.Com Content Network
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
The quadratic form defining the propagator is non-invertible. The reason is the gauge invariance of the field; adding a gradient to A does not change the physics. To fix this problem, one needs to fix a gauge. The most convenient way is to demand that the divergence of A is some function f, whose value is random
The divergence theorem is an important result for the mathematics of physics and engineering, particularly in electrostatics and fluid dynamics. In these fields, it is usually applied in three dimensions. However, it generalizes to any number of dimensions. In one dimension, it is equivalent to the fundamental theorem of calculus.
Often a vector field is drawn by curves (field lines) following the "flow"; the magnitude of the vector field is then the line density, and the flux through a surface is the number of lines. Lines originate from areas of positive divergence (sources) and end at areas of negative divergence (sinks).
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
Notice that the 1/2 here is essential—there is an example of a 1/2-Hölder functions due to Hardy and Littlewood, [14] which do not belong to the Wiener algebra. Besides, this theorem cannot improve the best known bound on the size of the Fourier coefficient of a α-Hölder function—that is only O ( 1 / n α ) {\displaystyle O(1/n^{\alpha ...
Most of them stem from the divergence of the correlation length, but also the dynamics slows down. Critical phenomena include scaling relations among different quantities, power-law divergences of some quantities (such as the magnetic susceptibility in the ferromagnetic phase transition ) described by critical exponents , universality , fractal ...
Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions.