When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tannaka–Krein duality - Wikipedia

    en.wikipedia.org/wiki/Tannaka–Krein_duality

    In mathematics, Tannaka–Krein duality theory concerns the interaction of a compact topological group and its category of linear representations. It is a natural extension of Pontryagin duality , between compact and discrete commutative topological groups, to groups that are compact but noncommutative .

  3. Krein's condition - Wikipedia

    en.wikipedia.org/wiki/Krein's_condition

    In mathematical analysis, Krein's condition provides a necessary and sufficient condition for exponential sums {= ⁡ (),,},to be dense in a weighted L 2 space on the real line.

  4. Krein–Milman theorem - Wikipedia

    en.wikipedia.org/wiki/Krein–Milman_theorem

    Krein–Milman theorem [2] — Suppose is a Hausdorff locally convex topological vector space (for example, a normed space) and is a compact and convex subset of . Then K {\displaystyle K} is equal to the closed convex hull of its extreme points : K = co ¯ ( extreme ⁡ ( K ) ) . {\displaystyle K~=~{\overline {\operatorname {co ...

  5. Krein–Smulian theorem - Wikipedia

    en.wikipedia.org/wiki/Krein–Smulian_theorem

    In mathematics, particularly in functional analysis, the Krein-Smulian theorem can refer to two theorems relating the closed convex hull and compactness in the weak topology. They are named after Mark Krein and Vitold Shmulyan , who published them in 1940.

  6. Choquet theory - Wikipedia

    en.wikipedia.org/wiki/Choquet_theory

    The original Krein–Milman theorem follows from Choquet's result. Another corollary is the Riesz representation theorem for states on the continuous functions on a metrizable compact Hausdorff space. More generally, for V a locally convex topological vector space, the Choquet–Bishop–de Leeuw theorem [1] gives the same formal statement.

  7. Krein–Rutman theorem - Wikipedia

    en.wikipedia.org/wiki/Krein–Rutman_theorem

    In functional analysis, the Krein–Rutman theorem is a generalisation of the Perron–Frobenius theorem to infinite-dimensional Banach spaces. [1] It was proved by Krein and Rutman in 1948. [ 2 ]

  8. Category:Theorems in discrete geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_in...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  9. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    Theorem — The set of states of a -algebra with a unit element is a compact convex set under the weak-topology. In general, (regardless of whether or not A {\displaystyle A} has a unit element) the set of positive functionals of norm ≤ 1 {\displaystyle \leq 1} is a compact convex set.