Ad
related to: lattice basis calculator free
Search results
Results From The WOW.Com Content Network
Given a basis = {,, …,} with n-dimensional integer coordinates, for a lattice L (a discrete subgroup of R n) with , the LLL algorithm calculates an LLL-reduced (short, nearly orthogonal) lattice basis in time () where is the largest length of under the Euclidean norm, that is, = (‖ ‖, ‖ ‖, …, ‖ ‖).
A lattice in which the conventional basis is primitive is called a primitive lattice, while a lattice with a non-primitive conventional basis is called a centered lattice. The choice of an origin and a basis implies the choice of a unit cell which can further be used to describe a crystal pattern.
Lattice reduction in two dimensions: the black vectors are the given basis for the lattice (represented by blue dots), the red vectors are the reduced basis. In mathematics, the goal of lattice basis reduction is to find a basis with short, nearly orthogonal vectors when given an integer lattice basis as input. This is realized using different ...
The Korkine–Zolotarev (KZ) lattice basis reduction algorithm or Hermite–Korkine–Zolotarev (HKZ) algorithm is a lattice reduction algorithm. For lattices in R n {\displaystyle \mathbb {R} ^{n}} it yields a lattice basis with orthogonality defect at most n n {\displaystyle n^{n}} , unlike the 2 n 2 / 2 {\displaystyle 2^{n^{2}/2}} bound of ...
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
Consider an FCC compound unit cell. Locate a primitive unit cell of the FCC; i.e., a unit cell with one lattice point. Now take one of the vertices of the primitive unit cell as the origin. Give the basis vectors of the real lattice. Then from the known formulae, you can calculate the basis vectors of the reciprocal lattice.
Lattice reduction algorithms aim, given a basis for a lattice, to output a new basis consisting of relatively short, nearly orthogonal vectors. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) was an early efficient algorithm for this problem which could output an almost reduced lattice basis in polynomial time. [33]
For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers.
Ad
related to: lattice basis calculator free