When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Although the proof of Dirichlet's Theorem makes use of calculus and analytic number theory, some proofs of examples are much more straightforward. In particular, the proof of the example of infinitely many primes of the form 4 n + 3 {\displaystyle 4n+3} makes an argument similar to the one made in the proof of Euclid's theorem (Silverman 2013).

  3. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. [1] It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions.

  4. Dirichlet's theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem

    Dirichlet's theorem may refer to any of several mathematical theorems due to Peter Gustav Lejeune Dirichlet. Dirichlet's theorem on arithmetic progressions; Dirichlet's approximation theorem; Dirichlet's unit theorem; Dirichlet conditions; Dirichlet boundary condition; Dirichlet's principle; Pigeonhole principle, sometimes also called Dirichlet ...

  5. Dirichlet's approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_approximation...

    This theorem is a consequence of the pigeonhole principle. Peter Gustav Lejeune Dirichlet who proved the result used the same principle in other contexts (for example, the Pell equation) and by naming the principle (in German) popularized its use, though its status in textbook terms comes later. [2]

  6. List of incomplete proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_incomplete_proofs

    Dirichlet's theorem on arithmetic progressions. In 1808 Legendre published an attempt at a proof of Dirichlet's theorem, but as Dupré pointed out in 1859 one of the lemmas used by Legendre is false. Dirichlet gave a complete proof in 1837. The proofs of the Kronecker–Weber theorem by Kronecker (1853) and Weber (1886) both had gaps. The first ...

  7. Vorlesungen über Zahlentheorie - Wikipedia

    en.wikipedia.org/wiki/Vorlesungen_über...

    The Vorlesungen contains two key results in number theory which were first proved by Dirichlet. The first of these is the class number formulae for binary quadratic forms. The second is a proof that arithmetic progressions contains an infinite number of primes (known as Dirichlet's theorem); this proof introduces Dirichlet L-series. These ...

  8. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  9. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    In mathematics, a Dirichlet problem asks for a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. [1] The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the ...