Ads
related to: radius and diameter worksheet
Search results
Results From The WOW.Com Content Network
Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.
The ratio of the circumference of any circle to its diameter is greater than but less than . This approximates what we now call the mathematical constant π . He found these bounds on the value of π by inscribing and circumscribing a circle with two similar 96-sided regular polygons .
The area of an annulus is the difference in the areas of the larger circle of radius R and the smaller one of radius r: = = = (+) (). As a corollary of the chord formula, the area bounded by the circumcircle and incircle of every unit convex regular polygon is π /4
The longest diameter is called the major axis. Conjugate diameters are a pair of diameters where one is parallel to a tangent to the ellipse at the endpoint of the other diameter. The diameter of a circle is exactly twice its radius. However, this is true only for a circle, and only in the Euclidean metric.
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
The product of the incircle radius and the circumcircle radius of a triangle with sides , , and is [13] = (+ +). Some relations among the sides, incircle radius, and circumcircle radius are: [ 14 ] a b + b c + c a = s 2 + ( 4 R + r ) r , a 2 + b 2 + c 2 = 2 s 2 − 2 ( 4 R + r ) r . {\displaystyle {\begin{aligned}ab+bc+ca&=s^{2}+(4R+r)r,\\a^{2 ...
The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is . Given the area of a non-circular object A, one can calculate its area-equivalent radius by setting = or, alternatively:
Consider a circle in with center at the origin and radius . Gauss's circle problem asks how many points there are inside this circle of the form ( m , n ) {\displaystyle (m,n)} where m {\displaystyle m} and n {\displaystyle n} are both integers.