When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ballistic coefficient - Wikipedia

    en.wikipedia.org/wiki/Ballistic_coefficient

    The formula for calculating the ballistic coefficient for small and large arms projectiles only is as follows: = [2] where: C b,projectile, ballistic coefficient as used in point mass trajectory from the Siacci method (less than 20 degrees).

  3. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  4. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    The equation is precise – it simply provides the definition of (drag coefficient), which varies with the Reynolds number and is found by experiment. Of particular importance is the u 2 {\displaystyle u^{2}} dependence on flow velocity, meaning that fluid drag increases with the square of flow velocity.

  5. Nose cone design - Wikipedia

    en.wikipedia.org/wiki/Nose_cone_design

    General parameters used for constructing nose cone profiles. Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance.

  6. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  7. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    is the drag coefficient, and V {\displaystyle V} is the characteristic velocity (taken as terminal velocity, V t {\displaystyle V_{t}} ). Substitution of equations ( 2 – 4 ) in equation ( 1 ) and solving for terminal velocity, V t {\displaystyle V_{t}} to yield the following expression

  8. Drag area - Wikipedia

    en.wikipedia.org/wiki/Drag_area

    In mechanics and aerodynamics, the drag area of an object represents the effective size of the object as it is "seen" by the fluid flow around it. The drag area is usually expressed as a product , where is a representative area of the object, and is the drag coefficient, which represents what shape it has and how streamlined it is.

  9. Mass ratio - Wikipedia

    en.wikipedia.org/wiki/Mass_ratio

    This equation can be rewritten in the following equivalent form: = / The fraction on the left-hand side of this equation is the rocket's mass ratio by definition. This equation indicates that a Δv of n {\displaystyle n} times the exhaust velocity requires a mass ratio of e n {\displaystyle e^{n}} .