Search results
Results From The WOW.Com Content Network
The term drag area derives from aerodynamics, where it is the product of some reference area (such as cross-sectional area, total surface area, or similar) and the drag coefficient. In 2003, Car and Driver magazine adopted this metric as a more intuitive way to compare the aerodynamic efficiency of various automobiles.
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
General parameters used for constructing nose cone profiles. Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance.
Aerodynamics are everything. Improve yours. For premium support please call: 800-290-4726 more ways to reach us
is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, c d {\displaystyle c_{\rm {d}}} depends on the Reynolds number ; if the fluid is a gas, c d {\displaystyle c_{\rm {d}}} depends on both the Reynolds number and the Mach number .
In ballistics, the ballistic coefficient (BC, C b) of a body is a measure of its ability to overcome air resistance in flight. [1] It is inversely proportional to the negative acceleration: a high number indicates a low negative acceleration—the drag on the body is small in proportion to its mass.
In mechanics and aerodynamics, the drag area of an object represents the effective size of the object as it is "seen" by the fluid flow around it. The drag area is usually expressed as a product C d A , {\displaystyle C_{d}A,} where A {\displaystyle A} is a representative area of the object, and C d {\displaystyle C_{d}} is the drag coefficient ...
In aerospace engineering, concerning aircraft, rocket and spacecraft design, overall propulsion system efficiency is the efficiency with which the energy contained in a vehicle's fuel is converted into kinetic energy of the vehicle, to accelerate it, or to replace losses due to aerodynamic drag or gravity.