When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Element (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Element_(mathematics)

    Rather, there are only three elements of B, namely the numbers 1 and 2, and the set {,}. The elements of a set can be anything. For example the elements of the set = {,,} are the color red, the number 12, and the set B.

  3. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    An equivalent, and more succinct, definition is: a field has two commutative operations, called addition and multiplication; it is a group under addition with 0 as the additive identity; the nonzero elements form a group under multiplication with 1 as the multiplicative identity; and multiplication distributes over addition.

  4. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  5. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.

  6. Property (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Property_(mathematics)

    In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.

  7. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    Some basic properties of a ring follow immediately from the axioms: The additive identity is unique. The additive inverse of each element is unique. The multiplicative identity is unique. For any element x in a ring R, one has x0 = 0 = 0x (zero is an absorbing element with respect to multiplication) and (–1)x = –x.

  8. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    Today the commutative property is a well-known and basic property used in most branches of mathematics. The first recorded use of the term commutative was in a memoir by François Servois in 1814, [ 1 ] [ 10 ] which used the word commutatives when describing functions that have what is now called the commutative property.

  9. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    This set-theoretic definition is based on the fact that a function establishes a relation between the elements of the domain and some (possibly all) elements of the codomain. Mathematically, a binary relation between two sets X and Y is a subset of the set of all ordered pairs ( x , y ) {\displaystyle (x,y)} such that x ∈ X {\displaystyle x ...