Search results
Results From The WOW.Com Content Network
The procedure proposed by Dunn [2] can be used to adjust confidence intervals. If one establishes m {\displaystyle m} confidence intervals, and wishes to have an overall confidence level of 1 − α {\displaystyle 1-\alpha } , each individual confidence interval can be adjusted to the level of 1 − α m {\displaystyle 1-{\frac {\alpha }{m}}} .
In educational assessment, T-score is a standard score Z shifted and scaled to have a mean of 50 and a standard deviation of 10. [ 14 ] [ 15 ] [ 16 ] In bone density measurements, the T-score is the standard score of the measurement compared to the population of healthy 30-year-old adults, and has the usual mean of 0 and standard deviation of 1.
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
Calculating the confidence interval. Let's say we have a sample with size 11, sample mean 10, and sample variance 2. For 90% confidence with 10 degrees of freedom, the one-sided t value from the table is 1.372 . Then with confidence interval calculated from
The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.
In the social sciences, a result may be considered statistically significant if its confidence level is of the order of a two-sigma effect (95%), while in particle physics and astrophysics, there is a convention of requiring statistical significance of a five-sigma effect (99.99994% confidence) to qualify as a discovery.
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.
The construction of binomial confidence intervals is a classic example where coverage probabilities rarely equal nominal levels. [3] [4] [5] For the binomial case, several techniques for constructing intervals have been created. The Wilson score interval is one well-known construction based on the normal distribution. Other constructions ...