Search results
Results From The WOW.Com Content Network
The Hopf fibration is a nontrivial mapping of the 3-sphere to the 2-sphere, and generates the third homotopy group of the 2-sphere. This picture mimics part of the Hopf fibration, an interesting mapping from the three-dimensional sphere to the two-dimensional sphere. This mapping is the generator of the third homotopy group of the 2-sphere.
The topological generalized Poincaré conjecture is that any n-dimensional homotopy sphere is homeomorphic to the n-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005. The resolution of the smooth Poincaré ...
Another geometric interpretation of the Hopf fibration can be obtained by considering rotations of the 2-sphere in ordinary 3-dimensional space. The rotation group SO(3) has a double cover, the spin group Spin(3), diffeomorphic to the 3-sphere. The spin group acts transitively on S 2 by rotations.
Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space. To define the n-th homotopy group, the base-point-preserving maps from an n-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes.
Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.
3.1 Homotopy groups. ... -dimensional disk, , with ... However, its cover is a regular CW structure on the sphere, with 2 cells in every dimension; indeed ...
The opposite is also true: If X has a hole with a d-dimensional boundary, then there is a d-dimensional sphere that is not homotopic to a constant map, so the d-th homotopy group of X is not trivial. In short, X has a hole with a d -dimensional boundary, if-and-only-if π d ( X ) ≇ 0 {\displaystyle \pi _{d}(X)\not \cong 0} .The homotopical ...
A homotopy between two embeddings of the torus into : as "the surface of a doughnut" and as "the surface of a coffee mug".This is also an example of an isotopy.. Formally, a homotopy between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function: [,] from the product of the space X with the unit interval [0, 1] to Y such that ...