Search results
Results From The WOW.Com Content Network
A kite with three 108° angles and one 36° angle forms the convex hull of the lute of Pythagoras, a fractal made of nested pentagrams. [23] The four sides of this kite lie on four of the sides of a regular pentagon, with a golden triangle glued onto the fifth side. [17] Part of an aperiodic tiling with prototiles made from eight kites
Oblong: longer than wide, or wider than long (i.e., a rectangle that is not a square). [5] Kite: two pairs of adjacent sides are of equal length. This implies that one diagonal divides the kite into congruent triangles, and so the angles between the two pairs of equal sides are equal in measure. It also implies that the diagonals are perpendicular.
A kite is cyclic if and only if it has two right angles – a right kite. A bicentric quadrilateral is a cyclic quadrilateral that is also tangential and an ex-bicentric quadrilateral is a cyclic quadrilateral that is also ex-tangential. A harmonic quadrilateral is a cyclic quadrilateral in which the product of the lengths of opposite sides are ...
A right kite with its circumcircle and incircle. The leftmost and rightmost vertices have right angles. In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1]
According to the characterization of these quadrilaterals, the two red squares on two opposite sides of the quadrilateral have the same total area as the two blue squares on the other pair of opposite sides. In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles.
In a deltoidal icositetrahedron, each face is a kite-shaped quadrilateral. The side lengths of these kites can be expressed in the ratio 0.7731900694928638:1. Specifically, the side adjacent to the obtuse angle has a length of approximately 0.707106785, while the side adjacent to the acute angle has a length of approximately 0.914213565.
[2]: p. 1 They could also construct half of a given angle, a square whose area is twice that of another square, a square having the same area as a given polygon, and regular polygons of 3, 4, or 5 sides [2]: p. xi (or one with twice the number of sides of a given polygon [2]: pp. 49–50 ).
The central angle of a square is equal to 90°. [4] The external angle of a square is equal to 90°. [4] The diagonals of a square are equal and bisect each other, meeting at 90°. [5] The diagonals of a square bisect its internal angles, forming adjacent angles of 45°. [6] All four sides of a square are equal. [7] Opposite sides of a square ...