When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverter (logic gate) - Wikipedia

    en.wikipedia.org/wiki/Inverter_(logic_gate)

    It is also called the complement gate [2] because it produces the ones' complement of a binary number, swapping 0s and 1s. The NOT gate is one of three basic logic gates from which any Boolean circuit may be built up. Together with the AND gate and the OR gate, any function in binary mathematics may be implemented.

  3. NAND logic - Wikipedia

    en.wikipedia.org/wiki/NAND_logic

    A CMOS transistor NAND element. V dd denotes positive voltage.. In CMOS logic, if both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path will be established between the output and Vss (ground), bringing the output low.

  4. Diode–transistor logic - Wikipedia

    en.wikipedia.org/wiki/Diode–transistor_logic

    Schematic of basic two-input DTL NAND gate. R3, R4 and V− shift the positive output voltage of the input DL stage below the ground (to cut off the transistor at low input voltage). Diode–transistor logic ( DTL ) is a class of digital circuits that is the direct ancestor of transistor–transistor logic .

  5. Boolean circuit - Wikipedia

    en.wikipedia.org/wiki/Boolean_circuit

    Several important complexity measures can be defined on Boolean circuits, including circuit depth, circuit size, and the number of alternations between AND gates and OR gates. For example, the size complexity of a Boolean circuit is the number of gates in the circuit. There is a natural connection between circuit size complexity and time ...

  6. Functional completeness - Wikipedia

    en.wikipedia.org/wiki/Functional_completeness

    The 3-input Fredkin gate is functionally complete reversible gate by itself – a sole sufficient operator. There are many other three-input universal logic gates, such as the Toffoli gate . In quantum computing , the Hadamard gate and the T gate are universal, albeit with a slightly more restrictive definition than that of functional completeness.

  7. Controlled NOT gate - Wikipedia

    en.wikipedia.org/wiki/Controlled_NOT_gate

    The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.

  8. Triple modular redundancy - Wikipedia

    en.wikipedia.org/wiki/Triple_modular_redundancy

    3-input majority gate using 4 NAND gates. The 3-input majority gate output is 1 if two or more of the inputs of the majority gate are 1; output is 0 if two or more of the majority gate's inputs are 0. Thus, the majority gate is the carry output of a full adder, i.e., the majority gate is a voting machine. [7]

  9. Toffoli gate - Wikipedia

    en.wikipedia.org/wiki/Toffoli_gate

    The Toffoli gate can be realized by five two-qubit quantum gates, [5] but it can be shown that it is not possible using fewer than five. [6] Another universal gate, the Deutsch gate, can be realized by five optical pulses with neutral atoms. [7] The Deutsch gate is a universal gate for quantum computing. [8]