Search results
Results From The WOW.Com Content Network
The litre is often also used in some calculated measurements, such as density (kg/L), allowing an easy comparison with the density of water. One litre of water has a mass of almost exactly one kilogram when measured at its maximal density, which occurs at about 4 °C. It follows, therefore, that 1000th of a litre, known as one millilitre (1 mL ...
It is equivalent to the units gram per millilitre (g/mL) and kilogram per litre (kg/L). The density of water is about 1 g/cm 3, since the gram was originally defined as the mass of one cubic centimetre of water at its maximum density at 4 °C (39 °F). [1]
One litre (0.001 m 3) of water [71] 1–3 kg Smallest breed of dog [72] 1–3 kg Typical laptop computer, 2010 [73] 1–3 kg Adult domestic tortoise:
1793: The grave (the precursor of the kilogram) was defined as the mass of 1 litre (dm 3) of water, which was determined to be 18841 grains. [11] 1795: the gram (1 / 1000 of a kilogram) was provisionally defined as the mass of one cubic centimetre of water at the melting point of ice. [12] 1799: The Kilogramme des Archives was manufactured as a ...
V – specific volume in cubic decimeters per kilogram (1 dm 3 is equivalent to 1 liter) ... Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure ...
[16] [17] At the same time, work was commissioned to precisely determine the mass of a cubic decimetre (one litre) of water. [Note 1] [11] Although the decreed definition of the kilogram specified water at 0 °C—its highly stable temperature point—the French chemist Louis Lefèvre-Gineau and the Italian naturalist Giovanni Fabbroni chose to ...
The quantity "1 ppm" can be used for a mass fraction if a water-borne pollutant is present at one-millionth of a gram per gram of sample solution. When working with aqueous solutions, it is common to assume that the density of water is 1.00 g/mL. Therefore, it is common to equate 1 kilogram of water with 1 L of water.
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.