When.com Web Search

  1. Ad

    related to: calculate beam stiffness chart

Search results

  1. Results From The WOW.Com Content Network
  2. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation.It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  3. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    By contrast, if a beam's weight is fixed, its cross-sectional dimensions are unconstrained, and increased stiffness is the primary goal, the performance of the beam will depend on Young's modulus divided by either density squared or cubed.

  4. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  5. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.

  6. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    The major difference being that with the addition of a fourth bearing the portion of the beam between the two loading points is put under maximum stress, as opposed to only the material right under the central bearing in the case of three-point bending.

  7. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Geometric stiffness: a global characteristic of the body that depends on its shape, and not only on the local properties of the material; for instance, an I-beam has a higher bending stiffness than a rod of the same material for a given mass per length; Hardness: relative resistance of the material's surface to penetration by a harder body;

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Otherwise methods such as virtual work, direct integration, Castigliano's method, Macaulay's method or the direct stiffness method are used. The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory.