When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Anomaly detection finds application in many domains including cybersecurity, medicine, machine vision, statistics, neuroscience, law enforcement and financial fraud to name only a few. Anomalies were initially searched for clear rejection or omission from the data to aid statistical analysis, for example to compute the mean or standard deviation.

  3. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  4. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set

  5. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    In a sample of 1000 observations, the presence of up to five observations deviating from the mean by more than three times the standard deviation is within the range of what can be expected, being less than twice the expected number and hence within 1 standard deviation of the expected number – see Poisson distribution – and not indicate an ...

  6. Robust Regression and Outlier Detection - Wikipedia

    en.wikipedia.org/wiki/Robust_Regression_and...

    The book has seven chapters. [1] [4] The first is introductory; it describes simple linear regression (in which there is only one independent variable), discusses the possibility of outliers that corrupt either the dependent or the independent variable, provides examples in which outliers produce misleading results, defines the breakdown point, and briefly introduces several methods for robust ...

  7. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    This is an important technique in the detection of outliers. It is among several named in honor of William Sealey Gosset, who wrote under the pseudonym "Student" (e.g., Student's distribution). Dividing a statistic by a sample standard deviation is called studentizing, in analogy with standardizing and normalizing.

  8. Median absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Median_absolute_deviation

    The median absolute deviation is a measure of statistical dispersion. Moreover, the MAD is a robust statistic, being more resilient to outliers in a data set than the standard deviation. In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it ...

  9. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence [clarify] on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method. [1]