Search results
Results From The WOW.Com Content Network
In theoretical computer science, the closest string is an NP-hard computational problem, [1] which tries to find the geometrical center of a set of input strings. To understand the word "center", it is necessary to define a distance between two strings. Usually, this problem is studied with the Hamming distance in mind.
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...
HackerRank categorizes most of their programming challenges into a number of core computer science domains, [3] including database management, mathematics, and artificial intelligence. When a programmer submits a solution to a programming challenge, their submission is scored on the accuracy of their output.
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
For the months April through December, the even numbered months are covered by the double dates 4/4, 6/6, 8/8, 10/10, and 12/12, all of which fall on the doomsday. The odd numbered months can be remembered with the mnemonic "I work from 9 to 5 at the 7-11 ", i.e., 9/5, 7/11, and also 5/9 and 11/7, are all doomsdays (this is true for both the ...
GNU Octave is a scientific programming language for scientific computing and numerical computation.Octave helps in solving linear and nonlinear problems numerically, and for performing other numerical experiments using a language that is mostly compatible with MATLAB.
Mason's Rule is also particularly useful for deriving the z-domain transfer function of discrete networks that have inner feedback loops embedded within outer feedback loops (nested loops). If the discrete network can be drawn as a signal flow graph, then the application of Mason's Rule will give that network's z-domain H(z) transfer function.
(,) can be implemented by the LOOP program MULT( x 1, x 2) x 0 := 0; LOOP x 2 DO x 0 := ADD( x 1, x 0) END. The program uses the ADD() program as a "convenience instruction". Expanded, the MULT program is a LOOP-program with two nested LOOP instructions. ADD counts for one.