Search results
Results From The WOW.Com Content Network
This is also known as the nth-term test, test for divergence, or the divergence test. Ratio test. This is also known as d'Alembert's criterion.
In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If ...
This is a particular case of the sum of the reciprocals of any geometric series where the first term and the common ratio are positive integers. If the first term is a and the common ratio is r then the sum is r / a (r − 1) . The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10.
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.
In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .
Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.
In the most common setting, the terms come from a commutative ring, so that the formal power series can be added term-by-term and multiplied via the Cauchy product. In this case the algebra of formal power series is the total algebra of the monoid of natural numbers over the underlying term ring. [76]
The n th term describes the length of the n th run A000002: Euler's totient function φ(n) 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ... φ(n) is the number of positive integers not greater than n that are coprime with n. A000010: Lucas numbers L(n) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... L(n) = L(n − 1) + L(n − 2) for n ≥ 2, with L(0) = 2 and L(1 ...