Search results
Results From The WOW.Com Content Network
For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB. [1]
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
This product assumes the partitions of the matrices are their columns. In this case m 1 = m, p 1 = p, n = q and for each j: n j = q j = 1. The resulting product is a mp × n matrix of which each column is the Kronecker product of the corresponding columns of A and B. Using the matrices from the previous examples with the columns partitioned:
The norm derived from this inner product is called the Frobenius norm, and it satisfies a submultiplicative property, as can be proven with the Cauchy–Schwarz inequality: [ ()] , if A and B are real matrices such that A B is a square matrix. The Frobenius inner product and norm arise frequently in matrix calculus and statistics.
An entry in the matrix product of two logical matrices will be 1, then, only if the row and column multiplied have a corresponding 1. Thus the logical matrix of a composition of relations can be found by computing the matrix product of the matrices representing the factors of the composition.
The set M(n, R) (also denoted M n (R) [7]) of all square n-by-n matrices over R is a ring called matrix ring, isomorphic to the endomorphism ring of the left R-module R n. [58] If the ring R is commutative , that is, its multiplication is commutative, then the ring M( n , R ) is also an associative algebra over R .
The matrix product of a m-by-n matrix A and a n-by-k matrix B is the m-by-k matrix C given by (), = =,,. [2] This matrix product is denoted AB. Unlike the product of numbers, matrix products are not commutative, that is to say AB need not be equal to BA. [2]
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.