When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).

  3. Basic solution (linear programming) - Wikipedia

    en.wikipedia.org/wiki/Basic_solution_(Linear...

    In linear programming, a discipline within applied mathematics, a basic solution is any solution of a linear programming problem satisfying certain specified technical conditions. For a polyhedron P {\displaystyle P} and a vector x ∗ ∈ R n {\displaystyle \mathbf {x} ^{*}\in \mathbb {R} ^{n}} , x ∗ {\displaystyle \mathbf {x} ^{*}} is a ...

  4. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions. If there exists an optimal solution, then there exists an optimal BFS.

  5. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    In linear programming problems with n variables, a necessary but insufficient condition for the feasible set to be bounded is that the number of constraints be at least n + 1 (as illustrated by the above example). If the feasible set is unbounded, there may or may not be an optimum, depending on the specifics of the objective function.

  6. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    Other algorithms for solving linear-programming problems are described in the linear-programming article. Another basis-exchange pivoting algorithm is the criss-cross algorithm . [ 41 ] [ 42 ] There are polynomial-time algorithms for linear programming that use interior point methods: these include Khachiyan 's ellipsoidal algorithm , Karmarkar ...

  7. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Then row reductions are applied to gain a final solution. The value of M must be chosen sufficiently large so that the artificial variable would not be part of any feasible solution. For a sufficiently large M, the optimal solution contains any artificial variables in the basis (i.e. positive values) if and only if the problem is not feasible.

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Because a solution to a linear system must satisfy all of the equations, the solution set is the intersection of these lines, and is hence either a line, a single point, or the empty set. For three variables, each linear equation determines a plane in three-dimensional space , and the solution set is the intersection of these planes.

  9. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    There is a close connection between linear programming problems, eigenequations, and von Neumann's general equilibrium model. The solution to a linear programming problem can be regarded as a generalized eigenvector. The eigenequations of a square matrix are as follows: