Ad
related to: what is a constant value in math graph theory
Search results
Results From The WOW.Com Content Network
A constant may be used to define a constant function that ignores its arguments and always gives the same value. [6] A constant function of a single variable, such as f ( x ) = 5 {\displaystyle f(x)=5} , has a graph of a horizontal line parallel to the x -axis. [ 7 ]
The graph of the constant function y = c is a horizontal line in the plane that passes through the point (0, c). [2] In the context of a polynomial in one variable x, the constant function is called non-zero constant function because it is a polynomial of degree 0, and its general form is f(x) = c, where c is nonzero.
For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set.
In mathematics, specifically bifurcation theory, the Feigenbaum constants / ˈ f aɪ ɡ ə n b aʊ m / [1] δ and α are two mathematical constants which both express ratios in a bifurcation diagram for a non-linear map. They are named after the physicist Mitchell J. Feigenbaum.
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
A d-claw in a graph is a set of d+1 vertices, one of which (the "center") is connected to the other d vertices, but the other d vertices are not connected to each other. A d-claw-free graph is a graph that does not have a d-claw subgraph. Consider the algorithm that starts with an empty set, and incrementally adds an arbitrary vertex to it as ...
In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. [1]
Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.