Ad
related to: matlab matrix size in online learning system challenger 2 post 12000 low rooflearningpool.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...
Low-rank matrix approximations are essential tools in the application of kernel methods to large-scale learning problems. [ 1 ] Kernel methods (for instance, support vector machines or Gaussian processes [ 2 ] ) project data points into a high-dimensional or infinite-dimensional feature space and find the optimal splitting hyperplane.
The lower bound of multiplications needed is 2mn+2n−m−2 (multiplication of n×m-matrices with m×n-matrices using the substitution method, m⩾n⩾3), which means n=3 case requires at least 19 multiplications and n=4 at least 34. [40] For n=2 optimal 7 multiplications 15 additions are minimal, compared to only 4 additions for 8 multiplications.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms , creation of user interfaces , and interfacing with programs written in other languages.
Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.
In statistical learning point of view, the matrix completion problem is an application of matrix regularization which is a generalization of vector regularization. For example, in the low-rank matrix completion problem one may apply the regularization penalty taking the form of a nuclear norm R ( X ) = λ ‖ X ‖ ∗ {\displaystyle R(X ...
Frequently used examples include the Schatten p-norms, with p = 1 or 2. For example, matrix regularization with a Schatten 1-norm, also called the nuclear norm, can be used to enforce sparsity in the spectrum of a matrix. This has been used in the context of matrix completion when the matrix in question is believed to have a restricted rank. [2]
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is sometimes more useful than the ...