When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Due to the formula |X| = X + + X −, this is the case if and only if E|X| is finite, and this is equivalent to the absolute convergence conditions in the definitions above. As such, the present considerations do not define finite expected values in any cases not previously considered; they are only useful for infinite expectations.

  3. Saddlepoint approximation method - Wikipedia

    en.wikipedia.org/wiki/Saddlepoint_approximation...

    The saddlepoint approximation method, initially proposed by Daniels (1954) [1] is a specific example of the mathematical saddlepoint technique applied to statistics, in particular to the distribution of the sum of independent random variables.

  4. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample mean is the average of the values of a variable in a sample, which is the sum of those values divided by the number of values. Using mathematical notation, if a sample of N observations on variable X is taken from the population, the sample mean is:

  5. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...

  6. Rice distribution - Wikipedia

    en.wikipedia.org/wiki/Rice_distribution

    This can be done using the method of moments, e.g., the sample mean and the sample standard deviation. The sample mean is an estimate of μ 1 ' and the sample standard deviation is an estimate of μ 2 1/2. The following is an efficient method, known as the "Koay inversion technique". [14] for solving the estimating equations, based on the ...

  7. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    Greek letters (e.g. θ, β) are commonly used to denote unknown parameters (population parameters). [3]A tilde (~) denotes "has the probability distribution of". Placing a hat, or caret (also known as a circumflex), over a true parameter denotes an estimator of it, e.g., ^ is an estimator for .

  8. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...

  9. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    For example, for an iid sample {x 1,..., x n} one can use T n (X) = x n as the estimator of the mean E[X]. Note that here the sampling distribution of T n is the same as the underlying distribution (for any n, as it ignores all points but the last), so E[T n (X)] = E[X] and it is unbiased, but it does not converge to any value.