Search results
Results From The WOW.Com Content Network
Nominal mass is a term used in high level mass spectrometric discussions, it can be calculated using the mass number of the most abundant isotope of each atom, without regard for the mass defect. For example, when calculating the nominal mass of a molecule of nitrogen (N 2) and ethylene (C 2 H 4) it comes out as. N 2 (2*14)= 28 Da C 2 H 4
The exact mass of an isotopic species (more appropriately, the calculated exact mass [9]) is obtained by summing the masses of the individual isotopes of the molecule. For example, the exact mass of water containing two hydrogen-1 (1 H) and one oxygen-16 (16 O) is 1.0078 + 1.0078 + 15.9949 = 18.0105 Da.
This is an extended version of the energy density table from the main Energy density page: ... Energy density by mass (MJ/kg) Energy density by volume (MJ/L)
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.
[1] [2] Mass spectra is a plot of relative abundance against mass-to-charge ratio. It is commonly used for the identification of organic compounds from electron ionization mass spectrometry. [3] [4] Organic chemists obtain mass spectra of chemical compounds as part of structure elucidation and the analysis is part of many organic chemistry ...
The δ values and absolute isotope ratios of common reference materials are summarized in Table 1 and described in more detail below. Alternative values for the absolute isotopic ratios of reference materials, differing only modestly from those in Table 1, are presented in Table 2.5 of Sharp (2007) [1] (a text freely available online), as well as Table 1 of the 1993 IAEA report on isotopic ...
Most of the isotopes with atomic mass numbers below 14 decay to isotopes of carbon, while most of the isotopes with masses above 15 decay to isotopes of oxygen. The shortest-lived known isotope is nitrogen-10, with a half-life of 143(36) yoctoseconds , though the half-life of nitrogen-9 has not been measured exactly.
Depending on the terrestrial source, the standard atomic weight varies within the range of [15.999 03, 15.999 77] (the conventional value is 15.999). 16 O has high relative and absolute abundance because it is a principal product of stellar evolution and because it is a primary isotope, meaning it can be made by stars that were initially ...