When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    For a plane given by the general form plane equation + + + =, the vector = (,,) is a normal. For a plane whose equation is given in parametric form (,) = + +, where is a point on the plane and , are non-parallel vectors pointing along the plane, a normal to the plane is a vector normal to both and , which can be found as the cross product =.

  3. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.

  4. Normal plane (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_plane_(geometry)

    The normal section of a surface at a particular point is the curve produced by the intersection of that surface with a normal plane. [1] [2] [3] The curvature of the normal section is called the normal curvature. If the surface is bow or cylinder shaped, the maximum and the minimum of these curvatures are the principal curvatures.

  5. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The osculating plane has the special property that the distance from the curve to the osculating plane is O(s 3), while the distance from the curve to any other plane is no better than O(s 2). This can be seen from the above Taylor expansion. Thus in a sense the osculating plane is the closest plane to the curve at a given point.

  6. Normal plane - Wikipedia

    en.wikipedia.org/wiki/Normal_plane

    A normal plane may refer to The plane perpendicular to the tangent vector of a space curve; see Frenet–Serret formulas. One of the planes containing the normal vector of a surface; see Normal plane (geometry). A term involving gears; see list of gear nomenclature.

  7. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The curvature is taken to be positive if the curve turns in the same direction as the surface's chosen normal, and otherwise negative. The directions in the normal plane where the curvature takes its maximum and minimum values are always perpendicular, if k 1 does not equal k 2, a result of Euler (1760), and are called principal directions.

  8. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    In either the coordinate or vector formulations, one may verify that the given point lies on the given plane by plugging the point into the equation of the plane. To see that it is the closest point to the origin on the plane, observe that p {\displaystyle \mathbf {p} } is a scalar multiple of the vector v {\displaystyle \mathbf {v} } defining ...

  9. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.