Ad
related to: different properties of solids and solutions of matter
Search results
Results From The WOW.Com Content Network
The propensity for any two substances to form a solid solution is a complicated matter involving the chemical, crystallographic, and quantum properties of the substances in question. Substitutional solid solutions, in accordance with the Hume-Rothery rules, may form if the solute and solvent have: Similar atomic radii (15% or less difference)
Forms of matter that are not composed of molecules and are organized by different forces can also be considered different states of matter. Superfluids (like Fermionic condensate) and the quark–gluon plasma are examples. In a chemical equation, the state of matter of the chemicals may be shown as (s) for solid, (l) for liquid, and (g) for gas.
Crystalline solid: A solid in which atoms, molecules, or ions are packed in regular order. Quasicrystal: A solid in which the positions of the atoms have long-range order, but this is not in a repeating pattern. Different structural phases of polymorphic materials are considered to be different states of matter in the Landau theory.
Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale ...
Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars. [3] Though there are many equations of state, none accurately predicts properties of substances under all conditions.
Solubility is the maximum amount of a solute that can dissolve in a solvent before the solute ceases to dissolve and remains in a separate phase. A mixture can separate into more than two liquid phases and the concept of phase separation extends to solids, i.e., solids can form solid solutions or
To understand the formation and properties of such dispersions (incl emulsions), it must be considered that the dispersed phase exhibits a "surface", which is covered ("wet") by a different "surface" that, hence, are forming an interface (chemistry). Both surfaces have to be created (which requires a huge amount of energy), and the interfacial ...
In solutions, solutes will not settle out after any period of time and they cannot be removed by physical methods, such as a filter or centrifuge. [12] As a homogeneous mixture, a solution has one phase (solid, liquid, or gas), although the phase of the solute and solvent may initially have been different (e.g., salt water).