Search results
Results From The WOW.Com Content Network
[1] [2] The low eccentricity and comparatively small size of its orbit give Venus the least range in distance between perihelion and aphelion of the planets: 1.46 million km. The planet orbits the Sun once every 225 days [3] and travels 4.54 au (679,000,000 km; 422,000,000 mi) in doing so, [4] giving an average orbital speed of 35 km/s (78,000 ...
Venus's equator rotates at 6.52 km/h (4.05 mph), whereas Earth's rotates at 1,674.4 km/h (1,040.4 mph). [ note 2 ] [ 153 ] Venus's rotation period measured with Magellan spacecraft data over a 500-day period is smaller than the rotation period measured during the 16-year period between the Magellan spacecraft and Venus Express visits, with a ...
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = .The equatorial and polar radii of a planet are often denoted and , respectively.
No emission from a potential dust coma has been detected around Bennu, which puts a limit of 10 6 g of dust within a radius of 4750 km. [34] Astrometric observations between 1999 and 2013 have demonstrated that 101955 Bennu is influenced by the Yarkovsky effect , causing the semimajor axis of its orbit to drift on average by 284 ± 1.5 meters/year.
According to data from the Pioneer Venus Orbiter altimeters, nearly 51% of the surface is located within 500 meters (1,600 feet) of the median radius of 6,052 km (3,761 mi); only 2% of the surface is located at elevations greater than 2 kilometres (1.2 mi) from the median radius.
Haberreiter, Schmutz & Kosovichev (2008) [1] determined the radius corresponding to the solar photosphere to be 695,660 ± 140 kilometres (432,263 ± 87 miles). This new value is consistent with helioseismic estimates; the same study showed that previous estimates using inflection point methods had been overestimated by approximately 300 km ...