Search results
Results From The WOW.Com Content Network
The stroke((ΔR 4) max) of an in-line crank slider is defined as the maximum linear distance the slider may travel between the two extreme points of its motion. With an in-line crank slider, the motion of the crank and follower links is symmetric about the sliding axis. This means that the crank angle required to execute a forward stroke is ...
From the geometry shown in the diagram above, the following variables are defined: rod length (distance between piston pin and crank pin) crank radius (distance between crank center and crank pin, i.e. half stroke)
the crank-rocker, in which the input crank fully rotates and the output link rocks back and forth; the slider-crank, in which the input crank rotates and the output slide moves back and forth; drag-link mechanisms, in which the input crank fully rotates and drags the output crank in a fully rotational movement.
Dimensioned drawing of a slider-crank (left) and its kinematic diagram (right). In mechanical engineering, a kinematic diagram or kinematic scheme (also called a joint map or skeleton diagram) illustrates the connectivity of links and joints of a mechanism or machine rather than the dimensions or shape of the parts. Often links are presented as ...
With a V angle of 90 degrees and offset crank pins, a V-twin engine can have perfect primary balance. If a shared crank pin is used (such as in a Ducati V-twin engine), the 360° crankshaft results in an uneven firing interval. These engines also have primary reciprocating-plane and rotating-plane imbalances.
A slider-crank linkage is a four-bar linkage with three revolute joints and one prismatic, or sliding, joint. The rotation of the crank drives the linear movement the slider, or the expansion of gases against a sliding piston in a cylinder can drive the rotation of the crank. There are two types of slider-cranks: in-line and offset. In-line
A prismatic joint is a one-degree-of-freedom kinematic pair [1] which constrains the motion of two bodies to sliding along a common axis, without rotation; for this reason it is often called a slider (as in the slider-crank linkage) or a sliding pair. They are often utilized in hydraulic and pneumatic cylinders. [2]
A quick-return mechanism is a subclass of a slider-crank linkage, with an offset crank. Quick return is a common feature of tools in which the action is performed in only one direction of the stroke, such as shapers and powered saws, because it allows less time to be spent on returning the tool to its initial position.