When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x2)(x + 2) is a polynomial ...

  3. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.

  4. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.

  5. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    This formula follows from the multiplicative formula above by multiplying numerator and denominator by (n − k)!; as a consequence it involves many factors common to numerator and denominator. It is less practical for explicit computation (in the case that k is small and n is large) unless common factors are first cancelled (in particular ...

  6. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  7. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).

  8. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Now the product of the factors a − mb mod n can be obtained as a square in two ways—one for each homomorphism. Thus, one can find two numbers x and y, with x 2 − y 2 divisible by n and again with probability at least one half we get a factor of n by finding the greatest common divisor of n and x − y.

  9. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    See Faulhaber's formula. ... The following is a useful property to calculate low-integer-order polylogarithms recursively in closed form: ...