When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor). lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and ...

  3. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    [3] [4] E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself. The composite numbers up to 150 are:

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  5. 7 - Wikipedia

    en.wikipedia.org/wiki/7

    7 is the only number D for which the equation 2 n − D = x 2 has more than two solutions for n and x natural. In particular, the equation 2 n − 7 = x 2 is known as the Ramanujan–Nagell equation. 7 is one of seven numbers in the positive definite quadratic integer matrix representative of all odd numbers: {1, 3, 5, 7, 11, 15, 33}. [19] [20]

  6. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  7. Beal conjecture - Wikipedia

    en.wikipedia.org/wiki/Beal_conjecture

    A variation of the conjecture asserting that x, y, z (instead of A, B, C) must have a common prime factor is not true. A counterexample is + =, in which 4, 3, and 7 have no common prime factor. (In fact, the maximum common prime factor of the exponents that is valid is 2; a common factor greater than 2 would be a counterexample to Fermat's Last ...

  8. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    [7] [8] [9] It is widely believed, [10] but not proven, that no odd perfect numbers exist; numerous restrictive conditions have been proven, [10] including a lower bound of 10 1500. [ 11 ] The following is a list of all 52 currently known (as of January 2025 [update] ) Mersenne primes and corresponding perfect numbers, along with their ...

  9. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    Euler proved that every factor of F n must have the form k 2 n+1 + 1 (later improved to k 2 n+2 + 1 by Lucas) for n ≥ 2. That 641 is a factor of F 5 can be deduced from the equalities 641 = 2 7 × 5 + 1 and 641 = 2 4 + 5 4.