When.com Web Search

  1. Ad

    related to: linear load from handrail to concrete

Search results

  1. Results From The WOW.Com Content Network
  2. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  3. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement).

  4. Structural dynamics - Wikipedia

    en.wikipedia.org/wiki/Structural_dynamics

    Although this is too simplistic to apply to a real structure, the Heaviside step function is a reasonable model for the application of many real loads, such as the sudden addition of a piece of furniture, or the removal of a prop to a newly cast concrete floor. However, in reality loads are never applied instantaneously – they build up over a ...

  5. Influence line - Wikipedia

    en.wikipedia.org/wiki/Influence_line

    Figure 1: (a) This simple supported beam is shown with a unit load placed a distance x from the left end. Its influence lines for four different functions: (b) the reaction at the left support (denoted A), (c) the reaction at the right support (denoted C), (d) one for shear at a point B along the beam, and (e) one for moment also at point B. Figure 2: The change in Bending Moment in a ...

  6. Structural load - Wikipedia

    en.wikipedia.org/wiki/Structural_load

    Dead loads have small load factors, such as 1.2, because weight is mostly known and accounted for, such as structural members, architectural elements and finishes, large pieces of mechanical, electrical and plumbing (MEP) equipment, and for buildings, it's common to include a Super Imposed Dead Load (SIDL) of around 5 pounds per square foot ...

  7. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams.

  8. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.

  9. Permissible stress design - Wikipedia

    en.wikipedia.org/wiki/Permissible_stress_design

    The predicted stresses and deflections are compared with allowable values that have a "factor" against various failure mechanisms such as leakage, yield, ultimate load prior to plastic failure, buckling, brittle fracture, fatigue, and vibration/harmonic effects. However, the predicted stresses almost always assumes the material is linear elastic.